Welcome to the resource topic for 2025/901
Title:
A Generic Framework for Practical Lattice-Based Non-interactive Publicly Verifiable Secret Sharing
Authors: Behzad Abdolmaleki, Mohammad Foroutani, Shahram Khazaei, Sajjad Nasirzadeh
Abstract:Non-interactive publicly verifiable secret sharing (PVSS) schemes enable the decentralized (re-)sharing of secrets in adversarial environments, allowing anyone to verify the correctness of distributed shares. Such schemes are essential for large-scale decentralized applications, including committee-based systems that require both transparency and robustness. However, existing PVSS schemes rely on group-based cryptography, resulting them vulnerable to quantum attacks and limiting their suitability for post-quantum applications.
In this work, we propose the first practical, fully lattice-based, non-interactive PVSS scheme, grounded on standard lattice assumptions for post-quantum security. At the heart of our design is a generic framework that transforms vector commitments and linear encryption schemes into efficient PVSS protocols. We enhance vector commitments by incorporating functional hiding and proof of smallness, ensuring that encrypted shares are both verifiable and privacy-preserving. Our construction introduces two tailored lattice-based encryption schemes, each supporting efficient proofs of decryption correctness. This framework provides strong verifiability guarantees while maintaining low proof sizes and computational efficiency, making it suitable for systems with large numbers of participants.
ePrint: https://eprint.iacr.org/2025/901
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .