[Resource Topic] 2025/749: GOLF: Unleashing GPU-Driven Acceleration for FALCON Post-Quantum Cryptography

Welcome to the resource topic for 2025/749

Title:
GOLF: Unleashing GPU-Driven Acceleration for FALCON Post-Quantum Cryptography

Authors: Ruihao Dai, Jiankuo Dong, Mingrui Qiu, Zhenjiang Dong, Fu Xiao, Jingqiang Lin

Abstract:

Quantum computers leverage qubits to solve certain computational problems significantly faster than classical computers. This capability poses a severe threat to traditional cryptographic algorithms, leading to the rise of post-quantum cryptography (PQC) designed to withstand quantum attacks. FALCON, a lattice-based signature algorithm, has been selected by the National Institute of Standards and Technology (NIST) as part of its post-quantum cryptography standardization process. However, due to the computational complexity of PQC, especially in cloud-based environments, throughput limitations during peak demand periods have become a bottleneck, particularly for FALCON.
In this paper, we introduce GOLF (GPU-accelerated Optimization for Lattice-based FALCON), a novel GPU-based parallel acceleration framework for FALCON. GOLF includes algorithm porting to the GPU, compatibility modifications, multi-threaded parallelism with distinct data, single-thread optimization for single tasks, and specific enhancements to the Fast Fourier Transform (FFT) module within FALCON. Our approach achieves unprecedented performance in FALCON acceleration on GPUs.
On the NVIDIA RTX 4090, GOLF reaches a signature generation throughput of 42.02 kops/s and a signature verification throughput of 10,311.04 kops/s. These results represent a 58.05$\times$ / 73.14$\times$ improvement over the reference FALCON implementation and a 7.17$\times$ / 3.79$\times$ improvement compared to the fastest known GPU implementation to date. GOLF demonstrates that GPU acceleration is not only feasible for post-quantum cryptography but also crucial for addressing throughput bottlenecks in real-world applications.

ePrint: https://eprint.iacr.org/2025/749

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .