Welcome to the resource topic for 2025/680
Title:
Pirouette: Query Efficient Single-Server PIR
Authors: Jiayi Kang, Leonard Schild
Abstract:Private information retrieval (PIR) allows a client to query a public database privately and serves as a key building block for privacy-enhancing applications. Minimizing query size is particularly important in many use cases, for example when clients operate on low-power or bandwidth-constrained devices. However, existing PIR protocols exhibit large query sizes: to query 2^{25} records, the smallest query size of 14.8KB is reported in Respire [Burton et al., CCS’24]. Respire is based on fully homomorphic encryption (FHE), where a common approach to lower the client-to-server communication cost is transciphering. When combining the state-of-the-art transciphering [Bon et al., CHES’24] with Respire, the resulting protocol (referred to as T-Respire) has a 336B query size, while incurring a 16.2x times higher server computation cost than Respire.
Our work presents the Pirouette protocol, which achieves a query size of just 36B without transciphering. This represents a 9.3x reduction compared to T-Respire and a 420x reduction to Respire. For queries over 2^{25} records, the single-core server computation in Pirouette is only 2x slower than Respire and 8.1x faster than T-Respire, and the server computation is highly parallelizable. Furthermore, Pirouette requires no database-specific hint for clients and naturally extends to support queries over encrypted databases.
ePrint: https://eprint.iacr.org/2025/680
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .