[Resource Topic] 2025/650: ADC-BE: Optimizing Worst-Case Bandwidth in Broadcast Encryption with Boolean Functions

Welcome to the resource topic for 2025/650

Title:
ADC-BE: Optimizing Worst-Case Bandwidth in Broadcast Encryption with Boolean Functions

Authors: Yadi Zhong

Abstract:

Recently, Dupin and Abelard proposed a broadcast encryption scheme which outperforms the Complete Subtree-based and Subset Difference broadcast encryption in terms of encryption cost and bandwidth requirement. However, Dupin and Abelard acknowledge that the worst-case bound for bandwidth requirement of Complete Subtree approach can be reached in their scheme as well. In this paper, we answer the call to further reduce this bandwidth bottleneck. We first provide concrete analysis to show how this worst-case upper-bound is reached from concrete Boolean functions. Then we present two improved broadcast encryption schemes to significantly reduce this worst-case bandwidth consumption for further optimization of Dupin and Abelard’s technique. Our proposed approach ADC-BE, composed of two algorithms, AD-BE and AC-BE, can significantly optimize this worst-case complexity from n/2 down to 1 for a system of n users. This is efficient especially for large number of users in the system. Our proposed schemes combines the algebraic normal form, disjunctive normal form, and conjunctive normal form to optimize a Boolean function to its minimized representation. In addition, our approaches can be made secure against quantum adversaries and are therefore post-quantum, where both algorithms AD-BE and AC-BE require minimal assumptions based on existence of one-way function.

ePrint: https://eprint.iacr.org/2025/650

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .