Welcome to the resource topic for 2025/625
Title:
FHECAP: An Encrypted Control System with Piecewise Continuous Actuation
Authors: Song Bian, Yunhao Fu, Dong Zhao, Haowen Pan, Yuexiang Jin, Jiayue Sun, Hui Qiao, Zhenyu Guan
Abstract:We propose an encrypted controller framework for linear time-invariant systems with actuator non-linearity based on fully homomorphic encryption (FHE). While some existing works explore the use of partially homomorphic encryption (PHE) in implementing linear control systems, the impacts of the non-linear behaviors of the actuators on the systems are often left unconcerned. In particular, when the inputs to the controller become too small or too large, actuators may burn out due to unstable system state oscillations. To solve this dilemma, we design and implement FHECAP, an FHE-based controller framework that can homomorphically apply non-linear functions to the actuators to rectify the system inputs. In FHECAP, we first design a novel data encoding scheme tailored for efficient gain matrix evaluation. Then, we propose a high-precision homomorphic algorithm to apply non-arithmetic piecewise function to realize the actuator normalization. In the experiments, compared with the existing state-of-the-art encrypted controllers, FHECAP achieves 4\times–1000\times reduction in computational latency. We evaluate the effectiveness of FHECAP in the real-world application of encrypted control for spacecraft rendezvous. The simulation results show that the FHECAP achieves real-time spacecraft rendezvous with negligible accuracy loss.
ePrint: https://eprint.iacr.org/2025/625
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .