[Resource Topic] 2025/1188: Depth-Optimized Quantum Implementation of CHAM

Welcome to the resource topic for 2025/1188

Title:
Depth-Optimized Quantum Implementation of CHAM

Authors: Kyungbae Jang, Yujin Oh, Hwajeong Seo

Abstract:

Security weaknesses in the symmetric-key components of a cipher can compromise its overall security assurances. With the rapid progress in quantum computing in recent years, there is a growing focus on assessing the resilience of symmetric-key cryptography against possible quantum attacks (e.g., Grover’s algorithm).

This paper is dedicated to examining the quantum attack resistance of CHAM, a family of lightweight block ciphers developed by a Korean research group. We provide an optimized quantum circuit implementation of CHAM and evaluate its complexity metrics, such as the number of qubits, gate count, and circuit depth, within the context of Grover’s search algorithm.

For Grover’s key search, minimizing the quantum circuit depth is the key optimization goal, particularly when parallel search capabilities are taken into account. Our approach enhances parallelism for a low-depth quantum circuit of the CHAM block cipher, significantly reducing the full circuit depth compared to previous works. For example, in the case of CHAM-128/128, our implementation achieves a full depth of 14,772, compared to 37,768 depth in the best known prior work. This highlights the substantial depth reduction enabled by our parallelism-oriented design, which facilitates more practical quantum attacks.

ePrint: https://eprint.iacr.org/2025/1188

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .