[Resource Topic] 2025/1129: Lattice-based Obfuscation from NTRU and Equivocal LWE

Welcome to the resource topic for 2025/1129

Title:
Lattice-based Obfuscation from NTRU and Equivocal LWE

Authors: Valerio Cini, Russell W. F. Lai, Ivy K. Y. Woo

Abstract:

Indistinguishability obfuscation (iO) turns a program unintelligible without altering its functionality and is a powerful cryptographic primitive that captures the power of most known primitives. Recent breakthroughs have successfully constructed iO from well-founded computational assumptions, yet these constructions are unfortunately insecure against quantum adversaries. In the search of post-quantum secure iO, a line of research investigates constructions from fully homomorphic encryption (FHE) and tailored decryption hint release mechanisms. Proposals in this line mainly differ in their designs of decryption hints, yet all known attempts either cannot be proven from a self-contained computational assumption, or are based on novel lattice assumptions which are subsequently cryptanalysed.

In this work, we propose a new plausibly post-quantum secure construction of iO by designing a new mechanism for releasing decryption hints. Unlike prior attempts, our decryption hints follow a public Gaussian distribution subject to decryption correctness constraints and are therefore in a sense as random as they could be. To generate such hints efficiently, we develop a general-purpose tool called primal lattice trapdoors, which allow sampling trapdoored matrices whose Learning with Errors (LWE) secret can be equivocated. We prove the security of our primal lattice trapdoors construction from the NTRU assumption. The security of the iO construction is then argued, along with other standard lattice assumptions, via a new Equivocal LWE assumption, for which we provide evidence for plausibility and identify potential targets for further cryptanalysis.

ePrint: https://eprint.iacr.org/2025/1129

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .