[Resource Topic] 2025/1123: Cryptographic Treatment of Key Control Security -- In Light of NIST SP 800-108

Welcome to the resource topic for 2025/1123

Title:
Cryptographic Treatment of Key Control Security – In Light of NIST SP 800-108

Authors: Ritam Bhaumik, Avijit Dutta, Akiko Inoue, Tetsu Iwata, Ashwin Jha, Kazuhiko Minematsu, Mridul Nandi, Yu Sasaki, Meltem Sönmez Turan, Stefano Tessaro

Abstract:

This paper studies the security of key derivation functions (KDFs), a central class of cryptographic algorithms used to derive multiple independent-looking keys (each associated with a particular context) from a single secret. The main security requirement is that these keys are pseudorandom (i.e., the KDF is a pseudorandom function). This paper initiates the study of an additional security property, called key control (KC) security, first informally put forward in a recent update to NIST Special Publication (SP) 800-108 standard for KDFs. Informally speaking, KC security demands that, given a known key, it is hard for an adversary to find a context that forces the KDF-derived key for that context to have a property that is specified a-priori and is hard to satisfy (e.g., that the derived key consists mostly of 0s, or that it is a weak key for a cryptographic algorithm using it).
We provide a rigorous security definition for KC security, and then move on to the analysis of the KDF constructions specified in NIST SP 800-108. We show, via security proofs in the random oracle model, that the proposed constructions based on XOFs or hash functions can accommodate for reasonable security margins (i.e., 128-bit security) when instantiated from KMAC and HMAC. We also show, via attacks, that all proposed block-cipher based modes of operation (while implementing mitigation techniques to prevent KC security attacks affecting earlier version of the standard) only achieve at best 72-bit KC security for 128-bit blocks, as with AES.

ePrint: https://eprint.iacr.org/2025/1123

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .