[Resource Topic] 2024/965: Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things

Welcome to the resource topic for 2024/965

Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things

Authors: Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao


Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage requirements. Additionally, these schemes are vulnerable to quantum computing attacks. Therefore, research focusing on designing an efficient post-quantum CLSC scheme is still far-reaching.
In this work, we propose PQ-CLSC, a novel post-quantum CLSC scheme that ensures quantum safety for IoMT. Our proposed design facilitates secure transmission of medical data between physicians and patients, effectively validating user legitimacy and minimizing the risk of private information leakage. To achieve this, we leverage lattice sampling algorithms and hash functions to generate the particial secret key and then employ the sign-then-encrypt method to obtain the ciphertext.
We also formally and prove the security of our design, including indistinguishability against chosen-ciphertext attacks (IND-CCA2) and existential unforgeability against chosen-message attacks (EU-CMA) security. Finally, through comprehensive performance evaluation, our signcryption overhead is only 30%-55% compared to prior arts, while our computation overhead is just around 45% of other existing schemes. The evaluation results demonstrate that our solution is practical and efficient.

ePrint: https://eprint.iacr.org/2024/965

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .