[Resource Topic] 2024/870: Computationally Secure Aggregation and Private Information Retrieval in the Shuffle Model

Welcome to the resource topic for 2024/870

Title:
Computationally Secure Aggregation and Private Information Retrieval in the Shuffle Model

Authors: Adrià Gascón, Yuval Ishai, Mahimna Kelkar, Baiyu Li, Yiping Ma, Mariana Raykova

Abstract:

The shuffle model has recently emerged as a popular setting for differential privacy, where clients can communicate with a central server using anonymous channels or an intermediate message shuffler. This model was also explored in the context of cryptographic tasks such as secure aggregation and private information retrieval (PIR). However, this study was almost entirely restricted to the stringent notion of information-theoretic security.

In this work, we study computationally secure aggregation protocols and PIR in the shuffle model. Our starting point is the insight that the previous technique of shuffling additive shares can be improved in the computational setting. We show that this indeed holds under the standard learning parity with noise (LPN) assumption, but even better efficiency follows from plausible conjectures about the multi-disjoint syndrome decoding (MDSD) problem that we introduce and study in this work.

We leverage the above towards improving the efficiency of secure aggregation and PIR in the shuffle model. For secure aggregation of long vectors, our protocols require 9\times-25\times less communication than the previous information-theoretic solutions. Our PIR protocols enjoy the simplicity and concrete efficiency benefits of multi-server PIR while only requiring a single server to store the database. Under the MDSD assumption, they improve over recent single-server PIR constructions by up to two orders of magnitude.

ePrint: https://eprint.iacr.org/2024/870

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .