[Resource Topic] 2024/678: Quantum-Safe Account Recovery for WebAuthn

Welcome to the resource topic for 2024/678

Title:
Quantum-Safe Account Recovery for WebAuthn

Authors: Douglas Stebila, Spencer Wilson

Abstract:

WebAuthn is a passwordless authentication protocol which allows users to authenticate to online services using public-key cryptography. Users prove their identity by signing a challenge with a private key, which is stored on a device such as a cell phone or a USB security token. This approach avoids many of the common security problems with password-based authentication.

WebAuthn’s reliance on proof-of-possession leads to a usability issue, however: a user who loses access to their authenticator device either loses access to their accounts or is required to fall back on a weaker authentication mechanism. To solve this problem, Yubico has proposed a protocol which allows a user to link two tokens in such a way that one (the primary authenticator) can generate public keys on behalf of the other (the backup authenticator). With this solution, users authenticate with a single token, only relying on their backup token if necessary for account recovery. However, Yubico’s protocol relies on the hardness of the discrete logarithm problem for its security and hence is vulnerable to an attacker with a powerful enough quantum computer.

We present a WebAuthn recovery protocol which can be instantiated with quantum-safe primitives. We also critique the security model used in previous analysis of Yubico’s protocol and propose a new framework which we use to evaluate the security of both the group-based and the quantum-safe protocol. This leads us to uncover a weakness in Yubico’s proposal which escaped detection in prior work but was revealed by our model. In our security analysis, we require the cryptographic primitives underlying the protocols to satisfy a number of novel security properties such as KEM unlinkability, which we formalize. We prove that well-known quantum-safe algorithms, including CRYSTALS-Kyber, satisfy the properties required for analysis of our quantum-safe protocol.

ePrint: https://eprint.iacr.org/2024/678

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .