[Resource Topic] 2024/643: Key-Homomorphic and Aggregate Verifiable Random Functions

Welcome to the resource topic for 2024/643

Key-Homomorphic and Aggregate Verifiable Random Functions

Authors: Giulio Malavolta


A verifiable random function (VRF) allows one to compute a random-looking image, while at the same time providing a unique proof that the function was evaluated correctly. VRFs are a cornerstone of modern cryptography and, among other applications, are at the heart of recently proposed proof-of-stake consensus protocols. In this work we initiate the formal study of aggregate VRFs, i.e., VRFs that allow for the aggregation of proofs/images into a small di- gest, whose size is independent of the number of input proofs/images, yet it still enables sound verification. We formalize this notion along with its security properties and we propose two constructions: The first scheme is conceptually simple, concretely efficient, and uses (asymmetric) bilinear groups of prime order. Pseudorandomness holds in the random oracle model and aggregate pseudorandomness is proven in the algebraic group model. The second scheme is in the standard model and it is proven secure against the learning with errors (LWE) problem.

As a cryptographic building block of independent interest, we introduce the notion of key homomorphic VRFs, where the verification keys and the proofs are endowed with a group structure. We conclude by discussing several applications of key-homomorphic and aggregate VRFs, such as distributed VRFs and aggregate proof-of-stake protocols.

ePrint: https://eprint.iacr.org/2024/643

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .