Welcome to the resource topic for
**2024/531**

**Title:**

Avoiding Trusted Setup in Isogeny-based Commitments

**Authors:**
Gustave Tchoffo Saah, Tako Boris Fouotsa, Emmanuel Fouotsa, Célestin Nkuimi-Jugnia

**Abstract:**

In 2021, Sterner proposed a commitment scheme based on supersingular isogenies. For this scheme to be binding, one relies on a trusted party to generate a starting supersingular elliptic curve of unknown endomorphism ring. In fact, the knowledge of the endomorphism ring allows one to compute an endomorphism of degree a power of a given small prime. Such an endomorphism can then be split into two to obtain two different messages with the same commitment. This is the reason why one needs a curve of unknown endomorphism ring, and the only known way to generate such supersingular curves is to rely on a trusted party or on some expensive multiparty computation. We observe that if the degree of the endomorphism in play is well chosen, then the knowledge of the endomorphism ring is not sufficient to efficiently compute such an endomorphism and in some particular cases, one can even prove that endomorphism of a certain degree do not exist. Leveraging these observations, we adapt Sterner’s commitment scheme in such a way that the endomorphism ring of the starting curve can be known and public. This allows us to obtain isogeny-based commitment schemes which can be instantiated without trusted setup requirements.

**ePrint:**
https://eprint.iacr.org/2024/531

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

**Example resources include:**
implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .