[Resource Topic] 2024/477: Large Language Models for Blockchain Security: A Systematic Literature Review

Welcome to the resource topic for 2024/477

Title:
Large Language Models for Blockchain Security: A Systematic Literature Review

Authors: Zheyuan He, Zihao Li, Sen Yang

Abstract:

Large Language Models (LLMs) have emerged as powerful tools in various domains involving blockchain security (BS). Several recent studies are exploring LLMs applied to BS. However, there remains a gap in our understanding regarding the full scope of applications, impacts, and potential constraints of LLMs on blockchain security. To fill this gap, we conduct a literature review on LLM4BS.

As the first review of LLM’s application on blockchain security, our study aims to comprehensively analyze existing research and elucidate how LLMs contribute to enhancing the security of blockchain systems. Through a thorough examination of scholarly works, we delve into the integration of LLMs into various aspects of blockchain security. We explore the mechanisms through which LLMs can bolster blockchain security, including their applications in smart contract auditing, identity verification, anomaly detection, vulnerable repair, and so on. Furthermore, we critically assess the challenges and limitations associated with leveraging LLMs for blockchain security, considering factors such as scalability, privacy concerns, and adversarial attacks. Our review sheds light on the opportunities and potential risks inherent in this convergence, providing valuable insights for researchers, practitioners, and policymakers alike.

ePrint: https://eprint.iacr.org/2024/477

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .