[Resource Topic] 2024/239: Simulation-Secure Threshold PKE from Standard (Ring-)LWE

Welcome to the resource topic for 2024/239

Title:
Simulation-Secure Threshold PKE from Standard (Ring-)LWE

Authors: Hiroki Okada, Tsuyoshi Takagi

Abstract:

Threshold public key encryption (ThPKE) is PKE that can be decrypted by collecting “partial decryptions” from t (≤ N) out of N parties. ThPKE based on the learning with errors problem (LWE) is particularly important because it can be extended to threshold fully homomorphic encryption (ThFHE). ThPKE and ThFHE are fundamental tools for constructing multiparty computation (MPC) protocols: In 2023, NIST initiated a project (NIST IR 8214C) to establish guidelines for implementing threshold cryptosystems. Because MPC often requires simulation-security (SS), ThPKE schemes that satisfy SS (SS-ThPKE) are also important. Recently, Micciancio and Suhl (ePrint 2023/1728) presented an efficient SS-ThPKE scheme based on LWE with a polynomial modulus. However, the scheme requires to use a nonstandard problem called “known-norm LWE” for the security proof because the norm ∥e∥ of the error of the public key is leaked from the partial decryptions. This leads to the following two challenges: 1) The construction based on LWE incurs a security loss of approximately 13 bits for 128-bit security. 2) No construction based on (standard) Ring-LWE has been presented. In this paper, we address both of these challenges: we propose an efficient SS-ThPKE scheme whose security is (directly) reduced from standard (Ring-)LWE with a polynomial modulus. The core technique of our construction is what we call “error sharing”. We distribute shares of a small error ζ via secret sharing, and use them to prevent leakage of ∥e∥ from partial decryptions.

ePrint: https://eprint.iacr.org/2024/239

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .