[Resource Topic] 2024/1836: Symmetric Encryption on a Quantum Computer

Welcome to the resource topic for 2024/1836

Title:
Symmetric Encryption on a Quantum Computer

Authors: David Garvin, Oleksiy Kondratyev, Alexander Lipton, Marco Paini

Abstract:

Classical symmetric encryption algorithms use N bits of a shared
secret key to transmit N bits of a message over a one-way channel in
an information theoretically secure manner. This paper proposes a hybrid
quantum-classical symmetric cryptosystem that uses a quantum computer to
generate the secret key. The algorithm leverages quantum circuits to
encrypt a message using a one-time pad-type technique whilst requiring
a shorter classical key. We show that for an N-qubit circuit, the
maximum number of bits needed to specify a quantum circuit grows as
N^{3/2} while the maximum number of bits that the quantum circuit
can encode grows as N^2. We do not utilise the full expressive
capability of the quantum circuits as we focus on second order Pauli
expectation values only. The potential exists to encode an exponential
number of bits using higher orders of Pauli expectation values.
Moreover, using a parameterised quantum circuit (PQC), we could
further augment the amount of securely shared information by
introducing a secret key dependence on some of the PQC parameters.
The algorithm may be suitable for an early fault-tolerant quantum
computer implementation as some degree of noise can be tolerated.
Simulation results are presented along with experimental results on
the 84-qubit Rigetti Ankaa-2 quantum computer.

ePrint: https://eprint.iacr.org/2024/1836

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .