[Resource Topic] 2024/1786: Black-Box Timed Commitments from Time-Lock Puzzles

Welcome to the resource topic for 2024/1786

Title:
Black-Box Timed Commitments from Time-Lock Puzzles

Authors: Hamza Abusalah, Gennaro Avitabile

Abstract:

A Timed Commitment (TC) with time parameter t is hiding for time at most t, that is, commitments can be force-opened by any third party within time t. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck.

In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by additionally relying on one-way permutations and collision-resistant hashing.

Currently, TLPs are known from (a) the specific repeated squaring assumption, (b) the general (necessary) assumption on the existence of worst-case non-parallelizing languages and indistinguishability obfuscation, and (c) any iteratively sequential function and the hardness of the circular small-secret LWE problem. The latter admits a plausibly post-quantum secure instantiation.

Hence, thanks to the generality of our transform, we get i) the first TC whose timed security is based on the the existence of non-parallelizing languages and ii) the first TC that is plausibly post-quantum secure.

We first define quasi publicly-verifiable TLPs (QPV-TLPs) and construct them from any standard TLP in a black-box manner without relying on any additional assumptions. Then, we devise a black-box commit-and-prove system to transform any QPV-TLPs into a TC.

ePrint: https://eprint.iacr.org/2024/1786

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .