Welcome to the resource topic for 2024/1773
Title:
Universal Adaptor Signatures from Blackbox Multi-Party Computation
Authors: Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, Vassilis Zikas
Abstract:Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation—which here we will refer to as universal adaptor signatures scheme, in short UAS—from any one-way function. However, this generic construction depends on the Karp reduction to the Hamiltonian cycle problem, which adds significant overhead and hinders practical applicability.
In this work, we present an alternative approach to construct universal adaptor signature schemes relying on the multi-party computation in the head (MPCitH) paradigm. This overcomes the reliance on the costly Karp reduction, while inheriting the core property of the MPCitH—which makes it an invaluable tool in efficient cryptographic protocols—namely, that the construction is black-box with respect to the underlying cryptographic primitive (while it remains non-black-box in the relation being proven). Our framework simplifies the design of UAS and enhances their applicability across a wide range of decentralized applications, such as blockchain and privacy-preserving systems. Our results demonstrate that MPCitH-based UAS schemes offer strong security guarantees while making them a promising tool in the design of real-world cryptographic protocols.
ePrint: https://eprint.iacr.org/2024/1773
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .