[Resource Topic] 2024/1766: Critical Round in Multi-Round Proofs: Compositions and Transformation to Trapdoor Commitments

Welcome to the resource topic for 2024/1766

Title:
Critical Round in Multi-Round Proofs: Compositions and Transformation to Trapdoor Commitments

Authors: Masayuki Abe, David Balbás, Dung Bui, Miyako Ohkubo, Zehua Shang, Mehdi Tibouchi

Abstract:

In many multi-round public-coin interactive proof systems, challenges in different rounds serve different roles, but a formulation that actively utilizes this aspect has not been studied extensively. In this paper, we propose new notions called critical-round special honest verifier zero-knowledge and critical-round special soundness. Our notions are simple, intuitive, easy to apply, and capture several practical multi-round proof protocols including, but not limited to, those from the MPC-in-the-Head paradigm.

We demonstrate the usefulness of these notions with two fundamental applications where three-round protocols are known to be useful, but multi-round ones generally fail. First, we show that critical-round proofs yield trapdoor commitment schemes. This result also enables the instantiation of post-quantum secure adaptor signatures and threshold ring signatures from MPCitH, resolving open questions in (Haque and Scafuro, PKC 2020) and in (Liu et al., ASIACRYPT 2024). Second, we show that critical-round proofs can be securely composed using the Cramer-Schoenmakers-Damgård method. This solves an open question posed by Abe et al. in CRYPTO 2024.

Overall, these results shed new light on the potential of multi-round proofs in both theoretical and practical cryptographic protocol design

ePrint: https://eprint.iacr.org/2024/1766

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .