[Resource Topic] 2024/160: LightDAG: A Low-latency DAG-based BFT Consensus through Lightweight Broadcast

Welcome to the resource topic for 2024/160

Title:
LightDAG: A Low-latency DAG-based BFT Consensus through Lightweight Broadcast

Authors: Xiaohai Dai, Guanxiong Wang, Jiang Xiao, Zhengxuan Guo, Rui Hao, Xia Xie, Hai Jin

Abstract:

To improve the throughput of Byzantine Fault Tolerance (BFT) consensus protocols, the Directed Acyclic Graph (DAG) topology has been introduced to parallel data processing, leading to the development of DAG-based BFT consensus. However, existing DAG-based works heavily rely on Reliable Broadcast (RBC) protocols for block broadcasting, which introduces significant latency due to the three communication steps involved in each RBC. For instance, DAGRider, a representative DAG-based protocol, exhibits a best latency of 12 steps, considerably higher than non-DAG protocols like PBFT, which only requires 3 steps. To tackle this issue, we propose LightDAG, which replaces RBC with lightweight broadcasting protocols such as Consistent Broadcast (CBC) and Plain Broadcast (PBC). Since CBC and PBC can be implemented in two and one communication steps, respectively, LightDAG achieves low latency.

In our proposal, we present two variants of LightDAG, namely LightDAG1 and LightDAG2, each providing a trade-off between the best latency and the expected worst latency. In LightDAG1, every block is broadcast using CBC, which exhibits a best latency of 5 steps and an expected worst latency of 14 steps. Since CBC cannot guarantee the totality property, we design a block retrieval mechanism in LightDAG1 to assist replicas in retrieving missing blocks. LightDAG2 utilizes a combination of PBC and CBC for block broadcasting, resulting in a best latency of 4 steps and an expected worst latency of 12(t+1) steps, where t represents the number of actual Byzantine replicas. Since a Byzantine replica may equivocate through PBC, LightDAG2 prohibits blocks from directly referencing contradictory blocks. To ensure liveness, we propose a mechanism to identify and exclude Byzantine replicas if they engage in equivocation attacks. Extensive experiments have been conducted to evaluate LightDAG, and the results demonstrate its feasibility and efficiency.

ePrint: https://eprint.iacr.org/2024/160

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .