[Resource Topic] 2024/1580: Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting

Welcome to the resource topic for 2024/1580

Title:
Polynomial Time Cryptanalytic Extraction of Deep Neural Networks in the Hard-Label Setting

Authors: Nicholas Carlini, Jorge Chávez-Saab, Anna Hambitzer, Francisco Rodríguez-Henríquez, Adi Shamir

Abstract:

Deep neural networks (DNNs) are valuable assets, yet their public accessibility raises security concerns about parameter extraction by malicious actors. Recent work by Carlini et al. (Crypto’20) and Canales- Martínez et al. (Eurocrypt’24) has drawn parallels between this issue and block cipher key extraction via chosen plaintext attacks. Leveraging differential cryptanalysis, they demonstrated that all the weights and biases of black-box ReLU-based DNNs could be inferred using a polynomial number of queries and computational time. However, their attacks relied on the availability of the exact numeric value of output logits, which allowed the calculation of their derivatives. To overcome this limitation, Chen et al. (Asiacrypt’24) tackled the more realistic hard-label scenario, where only the final classification label (e.g., “dog” or “car”) is accessible to the attacker. They proposed an extraction method requiring a polynomial number of queries but an exponential execution time. In addition, their approach was applicable only to a restricted set of architectures, could deal only with binary classifiers, and was demonstrated only on tiny neural networks with up to four neurons split among up to two hidden layers.
This paper introduces new techniques that, for the first time, achieve cryptanalytic extraction of DNN parameters in the most challenging hard-label setting, using both a polynomial number of queries and polynomial time. We validate our approach by extracting nearly one million parameters from a DNN trained on the CIFAR-10 dataset, comprising 832 neurons in four hidden layers. Our results reveal the surprising fact that all the weights of a ReLU-based DNN can be efficiently determined by analyzing only the geometric shape of its decision boundaries.

ePrint: https://eprint.iacr.org/2024/1580

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .