Welcome to the resource topic for 2024/1535
Title:
Relaxed Lattice-Based Programmable Hash Functions: New Efficient Adaptively Secure IBEs
Authors: Xingye Lu, Jingjing Fan, Man Ho AU
Abstract:In this paper, we introduce the notion of relaxed lattice-based programmable hash function (RPHF), which is a novel variant of lattice-based programmable hash functions (PHFs). Lattice-based PHFs, together with preimage trapdoor functions (TDFs), have been widely utilized (implicitly or explicitly) in the construction of adaptively secure identity-based encryption (IBE) schemes. The preimage length and the output length of the underlying PHF and TDF together determine the user secret key and ciphertext lengths of the IBE schemes.
However, the current lattice-based PHF definition imposes the restriction that the preimage length of TDF in the IBE schemes cannot be too short, hindering the utilization of size-efficient NTRU TDF. To overcome this hurdle, RPHF relaxes the hash key distribution requirement in the definition of PHF from statistical indistinguishability to computational indistinguishability. This relaxation eliminates limitations on the preimage length of underlying TDFs in IBE, enabling the construction of IBEs from NTRU TDFs.
We introduce two instantiations of RPHF: the first produces a hash output length of 2 ring elements, with a hash key size linear to the input length, and the second yields an output length of 14 ring elements, with a hash key size proportional to the square root of the input length.
Building upon these RPHF instantiations, we propose two adaptively secure lattice-based IBE schemes with ciphertext lengths of 5 and 17 ring elements and user secret key lengths of 4 and 16 ring elements, respectively.
The length of the IBE master public key is roughly equivalent to the size of the hash key of the underlying RPHF.
In comparison to existing IBE constructions, our proposed schemes achieve a significant reduction (over an order of magnitude) in ciphertext and secret key sizes. Notably, state-of-the-art constructions from ideal lattices exhibit secret key and ciphertext sizes over 100 ring elements, making our proposed schemes highly efficient. Moreover, the master public key sizes of our IBEs remain comparable.
ePrint: https://eprint.iacr.org/2024/1535
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .