Welcome to the resource topic for 2024/1534
Title:
More Efficient Lattice-based OLE from Circuit-private Linear HE with Polynomial Overhead
Authors: Leo de Castro, Duhyeong Kim, Miran Kim, Keewoo Lee, Seonhong Min, Yongsoo Song
Abstract:We present a new and efficient method to obtain circuit privacy for lattice-based linearly homomorphic encryptions (LHE). In particular, our method does not involve noise-flooding with exponetially large errors or iterative bootstrapping. As a direct result, we obtain a semi-honest oblivious linear evaluation (OLE) protocol with the same efficiency, reducing the communication cost of the prior state of the art by 50%.
Consequently, the amortized time of our protocol improves the prior work by 33% under 100Mbps network setting. Our semi-honest OLE is the first to achieve both concrete efficiency and asymptotic quasi-optimality. Together with an extension of the recent zero-knowledge proof of plaintext knowledge, our LHE yields actively-secure OLE with 2.7x reduced communication from the prior work. When applied to Overdrive (Eurocrypt '18), an MPC preprocessing protocol, our method provides 1.4x improvement in communication over the state of the art.
ePrint: https://eprint.iacr.org/2024/1534
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .