[Resource Topic] 2024/1342: Unconditionally secure key distribution without quantum channel

Welcome to the resource topic for 2024/1342

Title:
Unconditionally secure key distribution without quantum channel

Authors: Hua-Lei Yin

Abstract:

Key distribution plays a fundamental role in cryptography. Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution. This method has been demonstrated over distances of 508 and 1002 kilometers in the measurement-device-independent and twin-field configurations, respectively. However, quantum key distribution faces transmission distance issues and numerous side channel attacks since the basic physical picture requires the use of quantum channels between users. Even when quantum repeater and quantum constellation are used, commercializing quantum cryptography on a large scale remains unattainable due to the considerable expense and significant technical hurdles associated with establishing a global quantum network and facilitating mobile quantum communication. Here, by discovering the provable quantum one-way function, we propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate. There are no quantum channels for exchanging quantum signals between two legitimate users. Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys. We anticipate that this discovery presents a paradigm shift in achieving unconditionally secure cryptography, thereby facilitating its widespread application on a global scale.

ePrint: https://eprint.iacr.org/2024/1342

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .