[Resource Topic] 2024/134: Byzantine Fault Tolerance with Non-Determinism, Revisited

Welcome to the resource topic for 2024/134

Byzantine Fault Tolerance with Non-Determinism, Revisited

Authors: Sisi Duan, Yue Huang


The conventional Byzantine fault tolerance (BFT) paradigm requires replicated state machines to execute deterministic operations only. In practice, numerous applications and scenarios, especially in the era of blockchains, contain various sources of non-determinism. Despite decades of research on BFT, we still lack an efficient and easy-to-deploy solution for BFT with non-determinism—BFT-ND, especially in the asynchronous setting.
We revisit the problem of BFT-ND and provide a formal and asynchronous treatment of BFT-ND. In particular, we design and implement Block-ND that insightfully separates the task of agreeing on the order of transactions from the task of agreement on the state: Block-ND allows reusing existing BFT implementations; on top of BFT, we reduce the agreement on the state to multivalued Byzantine agreement (MBA), a somewhat neglected primitive by practical systems. Block-ND is completely asynchronous as long as the underlying BFT is asynchronous.
We provide a new MBA construction significantly faster than existing MBA constructions. We instantiate Block-ND in both the partially synchronous setting (with PBFT, OSDI 1999) and the purely asynchronous setting (with PACE, CCS 2022). Via a 91-instance WAN deployment on Amazon EC2, we show that Block-ND has only marginal performance degradation compared to conventional BFT.

ePrint: https://eprint.iacr.org/2024/134

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .