Welcome to the resource topic for 2024/130
Title:
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Authors: Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Abstract:While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without developers being able to weigh all design options.
This immediately raises the necessity for tool-assisted Design Space Exploration (DSE) for efficient and secure cryptographic hardware. For this, we present the progressive HADES framework, offering a customizable, extendable, and streamlined DSE for efficient and secure cryptographic hardware accelerators. This tool exhaustively traverses the design space driven by security requirements, rapidly predicts user-defined performance metrics, e.g., area footprint or cycle-accurate latency, and instantiates the most suitable candidate in a synthesizable Hardware Description Language (HDL).
We demonstrate the capabilities of our framework by applying our proof-of-concept implementation to a wide-range selection of state-of-the-art symmetric and PQC schemes, including the ChaCha20 stream cipher and the designated PQC standard Kyber, for which we provide the first set of arbitrary-order masked hardware implementations.
ePrint: https://eprint.iacr.org/2024/130
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .