[Resource Topic] 2024/1256: Concrete Analysis of Schnorr-type Signatures with Aborts

Welcome to the resource topic for 2024/1256

Title:
Concrete Analysis of Schnorr-type Signatures with Aborts

Authors: Theo Fanuela Prabowo, Chik How Tan

Abstract:

Lyubashevsky’s signature can be viewed as a lattice-based adapation of the Schnorr signature, with the core difference being the use of aborts during signature generation process. Since the proposal of Lyubashevsky’s signature, a number of other variants of Schnorr-type signatures with aborts have been proposed, both in lattice-based and code-based setting. In this paper, we examine the security of Schnorr-type signature schemes with aborts. We give a detailed analysis of when the expected value of the signature is correlated to the secret key, and when it is not. Our analysis shows that even when abort condition is employed, it is crucial to set the parameters carefully in order to defend against statistical attack. In particular, we recommend to set δ ≥ β (where δ, β are public parameters) as in this case we prove that the signature does not reveal any information about the secret key. On the other hand, if this condition is not satisfied, then some information about the secret key are leaked, making the scheme susceptible to statistical attacks. For completeness, we also analyze the security of Schnorr-type signatures without aborts. In particular, we present a detailed key recovery attack via statistical method on the EagleSign signature, which is one of the submission to the NIST call for Additional PQC Signature. Moreover, we give a formula for determining the number of required signatures to successfully launch the statistical attack.

ePrint: https://eprint.iacr.org/2024/1256

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .