Welcome to the resource topic for 2024/1251
Title:
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Authors: Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Abstract:Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including conductive polymers, metal-foams, carbon-based materials, and meta-materials, evaluating their effectiveness in attenuating emissions and preventing information-leakage, a task done with security-centric metrics for such materials for the first time. Through a systematic examination of existing literature, experimental studies and a construction of fully-simulatable EM environment in ANSYS-solver, we identify key factors influencing the performance of EMI-shield materials, such as shielding-effectiveness (SE), bandwidth, thickness, and material properties, on security characteristics.
We devise a connection between SE and cryptographic-SNR, and we demonstrate from real hardware measurements how and in what conditions can such materials provide very high security levels. By synthesizing insights from multidisciplinary research domains, this paper aims to provide valuable two-way benefit and guidance for researchers, engineers, and practitioners in the design and deployment of robust side-channel security measures leveraging EMI-shields, already in utilization devised by reliability standards.
ePrint: https://eprint.iacr.org/2024/1251
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .