[Resource Topic] 2024/1178: Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems

Welcome to the resource topic for 2024/1178

Title:
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems

Authors: Dominik Marchsreiter

Abstract:

Blockchain technology ensures accountability,
transparency, and redundancy in critical applications, includ-
ing IoT with embedded systems. However, the reliance on
public-key cryptography (PKC) makes blockchain vulnerable to
quantum computing threats. This paper addresses the urgent
need for quantum-safe blockchain solutions by integrating Post-
Quantum Cryptography (PQC) into blockchain frameworks.
Utilizing algorithms from the NIST PQC standardization pro-
cess, we aim to fortify blockchain security and resilience, partic-
ularly for IoT and embedded systems. Despite the importance
of PQC, its implementation in blockchain systems tailored for
embedded environments remains underexplored. We propose
a quantum-secure blockchain architecture, evaluating various
PQC primitives and optimizing transaction sizes through tech-
niques such as public-key recovery for Falcon, achieving up
to 17% reduction in transaction size. Our analysis identifies
Falcon-512 as the most suitable algorithm for quantum-secure
blockchains in embedded environments, with XMSS as a viable
stateful alternative. However, for embedded devices, Dilithium
demonstrates a higher transactions-per-second (TPS) rate
compared to Falcon, primarily due to Falcon’s slower sign-
ing performance on ARM CPUs. This highlights the signing
time as a critical limiting factor in the integration of PQC
within embedded blockchains. Additionally, we integrate smart
contract functionality into the quantum-secure blockchain,
assessing the impact of PQC on smart contract authentication.
Our findings demonstrate the feasibility and practicality of
deploying quantum-secure blockchain solutions in embedded
systems, paving the way for robust and future-proof IoT
applications.

ePrint: https://eprint.iacr.org/2024/1178

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .