[Resource Topic] 2023/944: BALoo: First and Efficient Countermeasure dedicated to Persistent Fault Attacks

Welcome to the resource topic for 2023/944

BALoo: First and Efficient Countermeasure dedicated to Persistent Fault Attacks

Authors: Pierre-Antoine Tissot, Lilian Bossuet, Vincent Grosso


Persistent fault analysis is a novel and efficient cryptanalysis method. The persistent fault attacks take advantage of a persistent fault injected in a non-volatile memory, then present on the device until the reboot of the device. Contrary to classical physical fault injection, where differential analysis can be performed, persistent fault analysis requires new analyses and dedicated countermeasures. Persistent fault analysis requires a persistent fault injected in the S-box such that the bijective characteristic of the permutation function is not present anymore. In particular, the analysis will use the non-uniform distribution of the S-box values: when one of the possible S-box values never appears and one of the possible S-box values appears twice.
In this paper, we present the first dedicated protection to prevent persistent fault analysis. This countermeasure, called BALoo for Bijection Assert with Loops, checks the property of bijectivity of the S-box. We show that this countermeasure has a 100% fault coverage for the persistent fault analysis, with a very small software overhead (memory overhead) and reasonable hardware overhead (logical resources, memory and performance). To evaluate the overhead of BALoo, we provide experimental results obtained with the software and the hardware (FPGA) implementations of an AES-128.

ePrint: https://eprint.iacr.org/2023/944

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .