Welcome to the resource topic for 2023/941
Title:
Constant Input Attribute Based (and Predicate) Encryption from Evasive and Tensor LWE
Authors: Shweta Agrawal, Melissa Rossi, Anshu Yadav, Shota Yamada
Abstract:Constructing advanced cryptographic primitives such as obfuscation or broadcast encryption from standard hardness assumptions in the post quantum regime is an important area of research, which has met with limited success despite significant effort. It is therefore extremely important to find new, simple to state assumptions in this regime which can be used to fill this gap. An important step was taken recently by Wee (Eurocrypt '22) who identified two new assumptions from lattices, namely evasive {\sf LWE} and tensor {\sf LWE}, and used these to construct broadcast encryption and ciphertext policy attribute based encryption for {\sf P} with optimal parameters. Independently, Tsabary formulated a similar assumption and used it to construct witness encryption (Crypto '22). Following Wee’s work, Vaikuntanathan, Wee and Wichs independently provided a construction of witness encryption (Asiacrypt '22).
In this work, we advance this line of research by providing the first construction of multi-input attribute based encryption ({\sf MIABE}) for the function class {\sf NC_1} for any constant arity from evasive {\sf LWE}. Our construction can be extended to support the function class {\sf P} by using evasive and a suitable strengthening of tensor {\sf LWE}. In more detail, our construction supports k encryptors, for any constant k, where each encryptor uses the master secret key {\sf msk} to encode its input (\mathbf{x}_i, m_i), the key generator computes a key {\sf sk}_f for a function f \in {\sf NC}_1 and the decryptor can recover (m_1,\ldots,m_k) if and only if f(\mathbf{x}_1,\ldots,\mathbf{x}_k)=1. The only known construction for {\sf MIABE} for {\sf NC}_1 by Agrawal, Yadav and Yamada (Crypto '22) supports arity 2 and relies on pairings in the generic group model (or with a non-standard knowledge assumption) in addition to {\sf LWE}. Furthermore, it is completely unclear how to go beyond arity 2 using this approach due to the reliance on pairings.
Using a compiler from Agrawal, Yadav and Yamada (Crypto '22), our {\sf MIABE} can be upgraded to multi-input predicate encryption for the same arity and function class. Thus, we obtain the first constructions for constant-arity predicate and attribute based encryption for a generalized class such as {\sf NC}_1 or {\sf P} from simple assumptions that may be conjectured post-quantum secure. Along the way, we show that the tensor {\sf LWE} assumption can be reduced to standard {\sf LWE} in an important special case which was not known before. This adds confidence to the plausibility of the assumption and may be of wider interest.
ePrint: https://eprint.iacr.org/2023/941
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .