[Resource Topic] 2023/872: Conjunctive Searchable Symmetric Encryption from Hard Lattices

Welcome to the resource topic for 2023/872

Conjunctive Searchable Symmetric Encryption from Hard Lattices

Authors: Debadrita Talapatra, Sikhar Patranabis, Debdeep Mukhopadhyay


Searchable Symmetric Encryption (SSE) supports efficient keyword searches over encrypted outsourced document collections while minimizing information leakage. All practically efficient SSE schemes supporting conjunctive queries rely crucially on quantum-broken cryptographic assumptions (such as discrete-log hard groups) to achieve compact storage and fast query processing. On the other hand, quantum-safe SSE schemes based on purely symmetric-key crypto-primitives either do not support conjunctive searches, or are practically inefficient. In particular, there exists no quantum-safe yet practically efficient conjunctive SSE scheme from lattice-based hardness assumptions.
We solve this open question by proposing Oblivious Post-Quantum Secure Cross Tags (OQXT) – the first lattice-based practically efficient and highly scalable conjunctive SSE scheme. The technical centerpiece of OQXT is a novel oblivious cross-tag generation protocol with provable security guarantees derived from lattice-based hardness assumptions. We prove the post-quantum simulation security of OQXT with respect to a rigorously defined and thoroughly analyzed leakage profile. We then present a prototype implementation of OQXT and experimentally validate its practical efficiency and scalability over extremely large real-world databases. Our experiments show that OQXT has competitive end-to-end search latency when compared with the best (quantum-broken) conjunctive SSE schemes.

ePrint: https://eprint.iacr.org/2023/872

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .