Welcome to the resource topic for 2023/717
Title:
Generic Error SDP and Generic Error CVE
Authors: Felice Manganiello, Freeman Slaughter
Abstract:This paper introduces a new family of CVE schemes built from generic errors (GE-CVE) and identifies a vulnerability therein. To introduce the problem, we generalize the concept of error sets beyond those defined by a metric, and use the set-theoretic difference operator to characterize when these error sets are detectable or correctable by codes. We prove the existence of a general, metric-less form of the Gilbert-Varshamov bound, and show that - like in the Hamming setting - a random code corrects a generic error set with overwhelming probability. We define the generic error SDP (GE-SDP), which is contained in the complexity class of NP-hard problems, and use its hardness to demonstrate the security of GE-CVE. We prove that these schemes are complete, sound, and zero-knowledge. Finally, we identify a vulnerability of the GE-SDP for codes defined over large extension fields and without a very high rate. We show that certain GE-CVE parameters suffer from this vulnerability, notably the restricted CVE scheme.
ePrint: https://eprint.iacr.org/2023/717
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .