[Resource Topic] 2023/716: Towards High-speed ASIC Implementations of Post-Quantum Cryptography

Welcome to the resource topic for 2023/716

Title:
Towards High-speed ASIC Implementations of Post-Quantum Cryptography

Authors: Malik Imran, Aikata Aikata, Sujoy Sinha Roy, Samuel pagliarini

Abstract:

In this brief, we realize different architectural techniques towards improving the performance of post-quantum cryptography (PQC) algorithms when implemented as hardware accelerators on an application-specific integrated circuit (ASIC) platform. Having SABER as a case study, we designed a 256-bit wide architecture geared for high-speed cryptographic applications that incorporates smaller and distributed SRAM memory blocks. Moreover, we have adapted the building blocks of SABER to process 256-bit words. We have also used a buffer technique for efficient polynomial coefficient multiplications to reduce the clock cycle count. Finally, double-sponge functions are combined serially (one after another) in a high-speed KECCAK core to improve the hash operations of SHA/SHAKE. For key-generation, encapsulation, and decapsulation operations of SABER, our 256-bit wide accelerator with a single sponge function is 1.71x, 1.45x, and 1.78x faster compared to the raw clock cycle count of a serialized SABER design. Similarly, our 256-bit implementation with double-sponge functions takes 1.08x, 1.07x & 1.06x fewer clock cycles compared to its single-sponge counterpart. The studied optimization techniques are not specific to SABER - they can be utilized for improving the performance of other lattice-based PQC accelerators.

ePrint: https://eprint.iacr.org/2023/716

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .