Welcome to the resource topic for 2023/654
Title:
Griffin: Towards Mixed Multi-Key Homomorphic Encryption
Authors: Thomas Schneider, Hossein Yalame, Michael Yonli
Abstract:This paper presents Griffin, an extension of the mixed-scheme single-key homomorphic encryption framework Pegasus (Lu et al., IEEE S&P’21) to a Multi-Key Homomorphic Encryption (MKHE) scheme with applications to secure computation. MKHE is a generalized notion of Homomorphic Encryption (HE) that allows for operations on ciphertexts encrypted under different keys. However, an efficient approach to evaluate both polynomial and non-polynomial functions on encrypted data in MKHE has not yet been developed, hindering the deployment of HE to real-life applications. Griffin addresses this challenge by introducing a method for transforming between MKHE ciphertexts of different schemes. The practicality of Griffin is demonstrated through benchmarks with multiple applications, including the sorting of sixty four 45-bit fixed point numbers with a precision of 7 bits in 21 minutes, and evaluating arbitrary functions with a one-time setup communication of 1.4 GB per party and 2.34 MB per ciphertext. Moreover, Griffin could compute the maximum of two numbers in 3.2 seconds, a 2× improvement over existing MKHE approaches that rely on a single scheme.
ePrint: https://eprint.iacr.org/2023/654
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .