[Resource Topic] 2023/547: Certifying Zero-Knowledge Circuits with Refinement Types

Welcome to the resource topic for 2023/547

Title:
Certifying Zero-Knowledge Circuits with Refinement Types

Authors: Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan Wang, Yi Sun, Luke Pearson, Anders Miltner, Işıl Dillig, Yu Feng

Abstract:

Zero-knowledge (ZK) proof systems have emerged as a promising solution for building security-sensitive applications. However, bugs in ZK applications are extremely difficult to detect and can allow a malicious party to silently exploit the system without leaving any observable trace. This paper presents Coda, a novel statically-typed language for building zero-knowledge applications. Critically, Coda makes it possible to formally specify and statically check properties of a ZK application through a rich refinement type system. One of the key challenges in formally verifying ZK applications is that they require reasoning about polynomial equations over large prime fields that go beyond the capabilities of automated theorem provers. Coda mitigates this challenge by generating a set of Coq lemmas that can be proven in an interactive manner with the help of a tactic library. We have used Coda to re-implement 79 arithmetic circuits from widely-used Circom libraries and applications. Our evaluation shows that Coda makes it possible to specify important and formally verify correctness properties of these circuits. Our evaluation also revealed 6 previously-unknown vulnerabilities in the original Circom projects.

ePrint: https://eprint.iacr.org/2023/547

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .