[Resource Topic] 2023/521: TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Computation

Welcome to the resource topic for 2023/521

Title:
TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Computation

Authors: David Bruce Cousins, Yuriy Polyakov, Ahmad Al Badawi, Matthew French, Andrew Schmidt, Ajey Jacob, Benedict Reynwar, Kellie Canida, Akhilesh Jaiswal, Clynn Mathew, Homer Gamil, Negar Neda, Deepraj Soni, Michail Maniatakos, Brandon Reagen

Abstract:

Secure computation is of critical importance to not only the DoD, but across financial institutions, healthcare, and anywhere personally identifiable information (PII) is accessed. Traditional security techniques require data to be decrypted before performing any computation. When processed on untrusted systems the decrypted data is vulnerable to attacks to extract the sensitive information. To address these vulnerabilities Fully Homomorphic Encryption (FHE) keeps the data encrypted during computation and secures the results, even in these untrusted environments. However, FHE requires a significant amount of computation to perform equivalent unencrypted operations. To be useful, FHE must significantly close the computation gap (within 10x) to make encrypted processing practical.
To accomplish this ambitious goal the TREBUCHET project is leading research and development in FHE processing hardware to accelerate deep computations on encrypted data, as part of the DARPA MTO Data Privacy for Virtual Environments (DPRIVE) program. We accelerate the major secure standardized FHE schemes (BGV, BFV, CKKS, FHEW, etc.) at >=128-bit security while integrating with the open-source PALISADE and OpenFHE libraries currently used in the DoD and in industry. We utilize a novel tile-based chip design with highly parallel ALUs optimized for vectorized 128b modulo arithmetic. The TREBUCHET coprocessor design provides a highly modular, flexible, and extensible FHE accelerator for easy reconfiguration, deployment, integration and application on other hardware form factors, such as System-on-Chip or alternate chip areas

ePrint: https://eprint.iacr.org/2023/521

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .