[Resource Topic] 2023/467: Secure Floating-Point Training

Welcome to the resource topic for 2023/467

Secure Floating-Point Training

Authors: Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, Dawn Song


Secure 2-party computation (2PC) of floating-point arithmetic is improving in performance and recent work runs deep learning algorithms with it, while being as numerically precise as commonly used machine learning (ML) frameworks like PyTorch. We find that the existing 2PC libraries for floating-point support generic computations and lack specialized support for ML training. Hence, their latency and communication costs for compound operations (e.g., dot products) are high. We provide novel specialized 2PC protocols for compound operations and prove their precision using numerical analysis. Our implementation BEACON outperforms state-of-the-art libraries for 2PC of floating-point by over 6\times.

ePrint: https://eprint.iacr.org/2023/467

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .