Welcome to the resource topic for 2023/439
Title:
Standard Model Time-Lock Puzzles: Defining Security and Constructing via Composition
Authors: Karim Eldefrawy, Sashidhar Jakkamsetti, Ben Terner, Moti Yung
Abstract:The introduction of time-lock puzzles initiated the study of publicly “sending information into the future.” For time-lock puzzles, the underlying security-enabling mechanism is the computational complexity of the operations needed to solve the puzzle, which must be tunable to reveal the solution after a predetermined time, and not before that time. Time-lock puzzles are typically constructed via a commitment to a secret, paired with a reveal algorithm that sequentially iterates a basic function
over such commitment. One then shows that short-cutting the iterative process violates cryptographic hardness of an underlying problem.
To date, and for more than twenty-five years, research on time-lock
puzzles relied heavily on iteratively applying well-structured algebraic functions. However, despite the tradition of cryptography to reason about primitives in a realistic model with standard hardness assumptions (often after initial idealized assumptions), most analysis of time-lock puzzles to date still relies on cryptography modeled (in an ideal manner) as a random oracle function or a generic group function. Moreover, Mahmoody et al. showed that time-lock puzzles with superpolynomial gap cannot be constructed from random-oracles; yet still, current treatments generally use an algebraic trapdoor to efficiently construct a puzzle with a large time gap, and then apply the inconsistent (with respect to Mahmoody et al.) random-oracle idealizations to analyze the solving process. Finally, little attention has been paid to the nuances of composing multi-party computation with timed puzzles that are solved as part of the protocol.
In this work, we initiate a study of time-lock puzzles in a model built upon a realistic (and falsifiable) computational framework. We present a new formal definition of residual complexity to characterize a realistic, gradual time-release for time-lock puzzles. We also present a general definition of timed multi-party computation (MPC) and both sequential and concurrent composition theorems for MPC in our model.
ePrint: https://eprint.iacr.org/2023/439
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .