[Resource Topic] 2023/1965: More Efficient Public-Key Cryptography with Leakage and Tamper Resilience

Welcome to the resource topic for 2023/1965

Title:
More Efficient Public-Key Cryptography with Leakage and Tamper Resilience

Authors: Shuai Han, Shengli Liu, Dawu Gu

Abstract:

In this paper, we study the design of efficient signature and public-key encryption (PKE) schemes in the presence of both leakage and tampering attacks.

Firstly, we formalize the strong leakage and tamper-resilient (sLTR) security model for signature, which provides strong existential unforgeability, and deals with bounded leakage and restricted tampering attacks, as a counterpart to the sLTR security introduced by Sun et al. (ACNS 2019) for PKE.

Then, we present direct constructions of signature and chosen-ciphertext attack (CCA) secure PKE schemes in the sLTR model, based on the matrix decisional Diffie-Hellman (MDDH) assumptions (which covers the standard symmetric external DH (SXDH) and k-Linear assumptions) over asymmetric pairing groups.
Our schemes avoid the use of heavy building blocks such as the true-simulation extractable non-interactive zero-knowledge proofs (tSE-NIZK) proposed by Dodis et al. (ASIACRYPT 2010), which are usually needed in constructing schemes with leakage and tamper-resilience.
Especially, our SXDH-based signature and PKE schemes are more efficient than the existing schemes in the leakage and tamper-resilient setting: our signature scheme has only 4 group elements in the signature, which is about 5×~8× shorter, and our PKE scheme has only 6 group elements in the ciphertext, which is about 1.3×~3.3× shorter.

Finally, we note that our signature scheme is the {\it first} one achieving strong existential unforgeability in the leakage and tamper-resilient setting, where strong existential unforgeability has important applications in building more complex primitives such as signcryption and authenticated key exchange.

ePrint: https://eprint.iacr.org/2023/1965

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .