[Resource Topic] 2023/1962: SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Welcome to the resource topic for 2023/1962

SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

Authors: Vincent Hwang


We survey various mathematical tools used in software works multiplying polynomials in \mathbb{Z}_q [x] / ⟨x^n −αx−β⟩. In particular, we survey implementation works targeting polynomial multiplications in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and AVX2.

There are three emphases in this paper: (i) modular arithmetic, (ii) homomorphisms, and (iii) vectorization. For modular arithmetic, we survey Montgomery, Barrett, and Plantard multiplications. For homomorphisms, we survey (a) various homomorphisms such as Cooley–Tukey FFT, Bruun’s FFT, Rader’s FFT, Karatsuba, and Toom– Cook; (b) various algebraic techniques for adjoining nice properties to the coefficient rings, including injections, Schönhage’s FFT, Nussbaumer’s FFT, and localization; and (c) various algebraic techniques related to the polynomial moduli, including twisting, composed multiplication, evaluation at ∞, Good–Thomas FFT, truncation, incomplete transformation, and Toeplitz matrix-vector product. For vectorization, we survey the relations between homomorphisms and the support of vector arithmetic. We then go through several case studies: We compare the implementations of modular multiplications used in Dilithium and Kyber, explain how the matrix-to-vector structure was exploited in Saber, and review the design choices of transformations for NTRU and NTRU Prime with vectorization. Finally, we outline several interesting implementation projects.

ePrint: https://eprint.iacr.org/2023/1962

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .