[Resource Topic] 2023/1915: Efficient Post-Quantum Secure Deterministic Threshold Wallets from Isogenies

Welcome to the resource topic for 2023/1915

Title:
Efficient Post-Quantum Secure Deterministic Threshold Wallets from Isogenies

Authors: Poulami Das, Andreas Erwig, Michael Meyer, Patrick Struck

Abstract:

Cryptocurrency networks crucially rely on digital signature schemes, which are used as an authentication mechanism for transactions. Unfortunately, most major cryptocurrencies today, including Bitcoin and Ethereum, employ signature schemes that are susceptible to quantum adversaries, i.e., an adversary with access to a quantum computer can forge signatures and thereby spend coins of honest users. In cryptocurrency networks, signature schemes are typically not executed in isolation, but within a so-called cryptographic wallet. In order to achieve security against quantum adversaries, the signature scheme and the cryptographic wallet must withstand quantum attacks.

In this work, we advance the study on post-quantum secure signature and wallet schemes. That is, we provide the first formal model for deterministic threshold wallets and we show a generic post-quantum secure construction from any post-quantum secure threshold signature scheme with rerandomizable keys. We then instantiate our construction from the isogeny-based signature scheme CSI-FiSh and we show that our instantiation significantly improves over prior work.

ePrint: https://eprint.iacr.org/2023/1915

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .