[Resource Topic] 2023/1911: Non-Interactive Classical Verification of Quantum Depth: A Fine-Grained Characterization

Welcome to the resource topic for 2023/1911

Title:
Non-Interactive Classical Verification of Quantum Depth: A Fine-Grained Characterization

Authors: Nai-Hui Chia, Shih-Han Hung

Abstract:

We introduce protocols for classical verification of quantum depth (CVQD). These protocols enable a classical verifier to differentiate between devices of varying quantum circuit depths, even in the presence of classical computation. The goal is to demonstrate that a classical verifier can reject a device with a quantum circuit depth of no more than d, even if the prover employs additional polynomial-time classical computation to deceive. Conversely, the verifier accepts a device with a quantum circuit depth of d'>d.

Previous results for separating hybrid quantum-classical computers with various quantum depths require either quantum access to oracles or interactions between the classical verifier and the quantum prover. However, instantiating oracle separations can significantly increase the quantum depth in general, and interaction challenges the quantum device to keep the qubits coherent while waiting for the verifier’s messages. These requirements pose barriers to implementing the protocols on near-term devices.

In this work, we present a two-message protocol under the quantum hardness of learning with errors and the random oracle heuristic. An honest prover only needs classical access to the random oracle, and therefore any instantiation of the oracle does not increase the quantum depth. To our knowledge, our protocol is the first non-interactive CVQD, the instantiation of which using concrete hash functions, e.g., SHA-3, does not require additional quantum depth.

Our second protocol seeks to explore the minimality of cryptographic assumptions and the tightness of the separations. To accomplish this, we introduce an untrusted quantum machine that shares entanglements with the target machine. Utilizing a robust self-test, our protocol certifies the depth of the target machine with information-theoretic security and nearly optimal separation.

ePrint: https://eprint.iacr.org/2023/1911

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .