Welcome to the resource topic for 2023/1851
Title:
Quantum Security of the UMTS-AKA Protocol and its Primitives, Milenage and TUAK
Authors: Paul Frixons, Sébastien Canard, Loïc Ferreira
Abstract:The existence of a quantum computer is one of the most significant threats cryptography has ever faced. However, it seems that real world protocols received little attention so far with respect to their future security. Indeed merely relying upon post-quantum primitives may not suffice in order for a security protocol to be resistant in a full quantum world. In this paper, we consider the fundamental UMTS key agreement used in 3G but also in 4G (LTE), and in the (recently deployed) 5G technology. We analyze the protocol in a quantum setting, with quantum communications (allowing superposition queries by the involved parties), and where quantum computation is granted to the adversary. We prove that, assuming the underlying symmetric-key primitive is quantum-secure, the UMTS key agreement is also quantum-secure. We also give a quantum security analysis of the underlying primitives, namely Milenage and TUAK. To the best of our knowledge this paper provides the first rigorous proof of the UMTS key agreement in a strong quantum setting. Our result shows that in the quantum world to come, the UMTS technology remains a valid scheme in order to secure the communications of billions of users.
ePrint: https://eprint.iacr.org/2023/1851
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .