[Resource Topic] 2023/1778: Immunizing Backdoored PRGs

Welcome to the resource topic for 2023/1778

Title:
Immunizing Backdoored PRGs

Authors: Marshall Ball, Yevgeniy Dodis, Eli Goldin

Abstract:

A backdoored Pseudorandom Generator (PRG) is a PRG which looks pseudorandom to the outside world, but a saboteur can break PRG security by planting a backdoor into a seemingly honest choice of public parameters, pk, for the system. Backdoored PRGs became increasingly important due to revelations about NIST’s backdoored Dual EC PRG, and later results about its practical exploitability.

Motivated by this, at Eurocrypt’15 Dodis et al. [21] initiated the question of immunizing backdoored PRGs. A k-immunization scheme repeatedly applies a post-processing function to the output of k backdoored PRGs, to render any (unknown) backdoors provably useless. For k=1, [21] showed that no deterministic immunization is possible, but then constructed “seeded” 1-immunizer either in the random oracle model, or under strong non-falsifiable assumptions. As our first result, we show that no seeded 1-immunization scheme can be black-box reduced to any efficiently falsifiable assumption.

This motivates studying k-immunizers for k\ge 2, which have an additional advantage of being deterministic (i.e., “seedless”). Indeed, prior work at CCS’17 [37] and CRYPTO’18 [7] gave supporting evidence that simple k-immunizers might exist, albeit in slightly different settings. Unfortunately, we show that simple standard model proposals of [37, 7] (including the XOR function [7]) provably do not work in our setting. On a positive, we confirm the intuition of [37] that a (seedless) random oracle is a provably secure 2-immunizer. On a negative, no (seedless) 2-immunization scheme can be black-box reduced to any efficiently falsifiable assumption, at least for a large class of natural 2-immunizers which includes all “cryptographic hash functions.”

In summary, our results show that k-immunizers occupy a peculiar place in the cryptographic world. While they likely exist, and can be made practical and efficient, it is unlikely one can reduce their security to a “clean” standard-model assumption.

ePrint: https://eprint.iacr.org/2023/1778

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .