[Resource Topic] 2023/1758: Pulsar: Secure Steganography through Diffusion Models

Welcome to the resource topic for 2023/1758

Pulsar: Secure Steganography through Diffusion Models

Authors: Tushar M. Jois, Gabrielle Beck, Gabriel Kaptchuk


Widespread efforts to subvert acccess to strong cryptography has renewed interest in steganography, the practice of embedding sensitive messages in mundane cover messages. Recent efforts at provably secure steganography have only focused on text-based generative models and cannot support other types of models, such as diffusion models, which are used for high-quality image synthesis. In this work, we initiate the study of securely embedding steganographic messages into the output of image diffusion models. We identify that the use of variance noise during image generation provides a suitable steganographic channel. We develop our construction, Pulsar, by building optimizations to make this channel practical for communication. Our implementation of Pulsar is capable of embedding \approx 275-542 bytes (on average) into a single image without altering the distribution of the generated image, all in the span of \approx 3 seconds of online time on a laptop. In addition, we discuss how the results of Pulsar can inform future research into diffusion models. Pulsar shows that diffusion models are a promising medium for steganography and censorship resistance.

ePrint: https://eprint.iacr.org/2023/1758

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .