[Resource Topic] 2023/1612: Mitigating MEV via Multiparty Delay Encryption

Welcome to the resource topic for 2023/1612

Mitigating MEV via Multiparty Delay Encryption

Authors: Amirhossein Khajehpour, Hanzaleh Akbarinodehi, Mohammad Jahanara, Chen Feng


Ethereum is a decentralized and permissionless network offering several attractive features. However, block proposers in Ethereum can exploit the order of transactions to extract value. This phenomenon, known as maximal extractable value (MEV), not only disrupts the optimal functioning of different protocols but also undermines the stability of the underlying consensus mechanism.

In this work, we present a new method to alleviate the MEV problem by separating transaction inclusion and execution, keeping transactions encrypted before execution. We formulate the notion of multiparty delay encryption (MDE) and construct a practical MDE scheme based on time-lock puzzles. Unlike other encryption-based methods, our method excels in scalability (in terms of transaction decryption), efficiency (minimizing communication and storage overhead), and security (with minimal trust assumptions). To demonstrate the effectiveness of our MDE scheme, we have implemented it on a local Ethereum testnet. We also prove that with the presence of just one honest attestation aggregator per slot, the MEV threat can be significantly mitigated in a practical way.

ePrint: https://eprint.iacr.org/2023/1612

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .