[Resource Topic] 2023/147: Fiat-Shamir Bulletproofs are Non-Malleable (in the Random Oracle Model)

Welcome to the resource topic for 2023/147

Title:
Fiat-Shamir Bulletproofs are Non-Malleable (in the Random Oracle Model)

Authors: Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, Daniel Tschudi

Abstract:

Bulletproofs (Bünz et al. IEEE S&P 2018) are a celebrated ZK proof system that allows for short and efficient proofs, and have been implemented and deployed in several real-world systems. In practice, they are most often implemented in their non-interactive version obtained using the Fiat-Shamir transform. A security proof for this setting is necessary for ruling out malleability attacks. These attacks can lead to very severe vulnerabilities, as they allow an adversary to forge proofs re-using or modifying parts of the proofs provided by the honest parties. An earlier version of this work (Ganesh et al. EUROCRYPT 2022) provided evidence for non-malleability of Fiat-Shamir Bulletproofs. This was done by proving simulation-extractability, which implies non-malleability, in the algebraic group model.

In this work, we generalize the former result and prove simulation extractability in the programmable random oracle model, removing the need for the algebraic group model. Along the way, we establish a generic chain of reductions for Fiat-Shamir-transformed multi-round public-coin proofs to be simulation-extractable in the (programmable) random oracle model, which may be of independent interest.

ePrint: https://eprint.iacr.org/2023/147

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .