[Resource Topic] 2023/1435: Identity-Based Matchmaking Encryption, Revisited: Strong Security and Practical Constructions from Standard Classical and Post-Quantum Assumptions

Welcome to the resource topic for 2023/1435

Title:
Identity-Based Matchmaking Encryption, Revisited: Strong Security and Practical Constructions from Standard Classical and Post-Quantum Assumptions

Authors: Sohto Chiku, Keitaro Hashimoto, Keisuke Hara, Junji Shikata

Abstract:

Identity-based matchmaking encryption (IB-ME), proposed by Ateniese et al. at Crypto 2019, allows users to communicate privately in an anonymous and authenticated manner. In this work, we revisit the security definitions and construction of IB-ME. First, we re-formalize the existing security notions for IB-ME. We reorganize privacy and authenticity notions into respective three and four definitions, which allows us to compare IB-ME schemes accurately. Second, we propose a highly efficient and strongly secure IB-ME scheme from the bilinear Diffie-Hellman assumption in the random oracle model. This scheme is based on the IB-ME scheme proposed by Ateniese et al., but we introduce several techniques to improve its security and efficiency. Third, we propose a new generic construction of IB-ME from anonymous identity-based encryption and identity-based signature. This is the first generic construction that does not rely on hierarchical identity-based encryption. Through this construction, we obtain various IB-ME schemes from both classical and post-quantum assumptions. For example, we obtain a more efficient scheme from the symmetric external Diffie-Hellman assumption in the standard model, and a practical scheme from lattices in the quantum random oracle model whose secret keys and ciphertexts are less than 10 Kilobytes. Moreover, our generic construction produces the first pairing-free IB-ME scheme in the standard model and the first tightly secure lattice-based IB-ME scheme in the quantum random oracle model.

ePrint: https://eprint.iacr.org/2023/1435

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .