[Resource Topic] 2023/1348: Adaptively Secure (Aggregatable) PVSS and Application to Distributed Randomness Beacons

Welcome to the resource topic for 2023/1348

Title:
Adaptively Secure (Aggregatable) PVSS and Application to Distributed Randomness Beacons

Authors: Renas Bacho, Julian Loss

Abstract:

Publicly Verifiable Secret Sharing (PVSS) is a fundamental primitive that allows to share a secret S among n parties via a publicly verifiable transcript T. Existing (efficient) PVSS are only proven secure against static adversaries who must choose who to corrupt ahead of a protocol execution. As a result, any protocol (e.g., a distributed randomness beacon) that builds on top of such a PVSS scheme inherits this limitation. To overcome this barrier, we revisit the security of PVSS under adaptive corruptions and show that, surprisingly, many protocols from the literature already achieve it in a meaningful way:

  • We propose a new security definition for aggregatable PVSS, i.e., schemes that allow to homomorphically combine multiple transcripts into one compact aggregate transcript AT that shares the sum of their individual secrets. Our notion captures that if the secret shared by AT contains at least one contribution from an honestly generated transcript, it should not be predictable. We then prove that several existing schemes satisfy this notion against adaptive corruptions in the algebraic group model.

  • To motivate our new notion, we show that it implies the adaptive security of two recent random beacon protocols, SPURT (S&P '22) and OptRand (NDSS '23), who build on top of aggregatable PVSS schemes satisfying our notion of unpredictability. For a security parameter \lambda, our result improves the communication complexity of the best known adaptively secure random beacon protocols to O(\lambda n^2) for synchronous networks with t2 corruptions and partially synchronous networks with t3 corruptions.

ePrint: https://eprint.iacr.org/2023/1348

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .